J423. Proposed by Titu Andreescu, University of Texas at Dallas, USA

(a) Prove that for any real numbers a, b, c

$$
a^{2}+(2-\sqrt{2}) b^{2}+c^{2} \geq \sqrt{2}(a b-b c+c a) ;
$$

(b) Find the best constant k such that for all real numbers a, b, c

$$
a^{2}+k b^{2}+c^{2} \geq \sqrt{2}(a b+b c+c a)
$$

Solution by Arkady Alt, San Jose, California, USA.
(a) $a^{2}+(2-\sqrt{2}) b^{2}+c^{2}-\sqrt{2}(a b-b c+c a)=a^{2}-\sqrt{2} a(b+c)+(2-\sqrt{2}) b^{2}+c^{2}+\sqrt{2} b c=$
$\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+(2-\sqrt{2}) b^{2}+c^{2}+\sqrt{2} b c-\frac{(b+c)^{2}}{2}=$
$\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+\frac{(3-2 \sqrt{2}) b^{2}+2(\sqrt{2}-1) b c+c^{2}}{2}=$
$\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+\frac{((\sqrt{2}-1) b+c)^{2}}{2} \geq 0$.
(b) Note that $a^{2}+k b^{2}+c^{2}-\sqrt{2}(a b+b c+c a)=a^{2}-\sqrt{2} a(b+c)+k b^{2}+c^{2}-\sqrt{2} b c=$
$\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+k b^{2}+c^{2}-\sqrt{2} b c-\frac{(b+c)^{2}}{2}=$
$\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+\frac{(2 k-1) b^{2}+c^{2}-2(\sqrt{2}+1) b c}{2}$.
Assume that inequality $a^{2}+k b^{2}+c^{2} \geq \sqrt{2}(a b+b c+c a)$. holds for any real a, b, c.
Then $\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+\frac{(2 k-1) b^{2}+c^{2}-2(\sqrt{2}+1) b c}{2} \geq 0$ for any real a, b, c and, therefore, in particular, for any real b, c and $a=\frac{b+c}{\sqrt{2}}$ holds inequality
(1) $c^{2}-2(\sqrt{2}+1) b c+(2 k-1) b^{2} \geq 0 \Leftrightarrow(c-(\sqrt{2}+1) b)^{2}+2 b^{2}(k-\sqrt{2}-2) \geq 0$

In particular for $b=1$ and $c=\sqrt{2}+1$ we obtain $2(k-\sqrt{2}-2) \geq 0 \Leftrightarrow k \geq \sqrt{2}+2$.
Let now $k \geq \sqrt{2}+2$. Then $a^{2}+k b^{2}+c^{2}-\sqrt{2}(a b+b c+c a)=$
$\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+\frac{(2 k-1) b^{2}+c^{2}-2(\sqrt{2}+1) b c}{2}=$
$\left(a-\frac{b+c}{\sqrt{2}}\right)^{2}+\frac{(c-(\sqrt{2}+1) b)^{2}+2 b^{2}(k-\sqrt{2}-2)}{2} \geq 0$ for any real a, b, c.
Thus, $k=\sqrt{2}+2$ is the best (minimal) constant k such that for all real numbers a, b, c inequality $a^{2}+k b^{2}+c^{2} \geq \sqrt{2}(a b+b c+c a)$ holds.

