
J423. Proposed by Titu Andreescu, University of Texas at Dallas, USA

(a) Prove that for any real numbers a,b,c

a2  2  2 b2  c2  2 ab  bc  ca;

(b) Find the best constant k such that for all real numbers a,b,c

a2  kb2  c2  2 ab  bc  ca.

Solution by Arkady Alt, San Jose, California, USA.
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Assume that inequality a2  kb2  c2  2 ab  bc  ca. holds for any real a,b,c.
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In particular for b  1 and c  2  1 we obtain 2 k  2  2  0  k  2  2.

Let now k  2  2. Then a2  kb2  c2  2 ab  bc  ca 
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Thus, k  2  2 is the best (minimal) constant k such that for all real numbers a,b,c

inequality a2  kb2  c2  2 ab  bc  ca holds.


